6,475 research outputs found

    Surface magnetic ordering in topological insulators with bulk magnetic dopants

    Full text link
    We show that a three dimensional topological insulator doped with magnetic impurities in the bulk can have a regime where the surface is magnetically ordered but the bulk is not. This is in contrast to conventional materials where bulk ordered phases are typically more robust than surface ordered phases. The difference originates from the topologically protected gapless surface states characteristic of topological insulators. We study the problem using a mean field approach in two concrete models that give the same qualitative result, with some interesting differences. Our findings could help explain recent experimental results showing the emergence of a spectral gap in the surface state of Bi2Se3 doped with Mn or Fe atoms, but with no measurable bulk magnetism.Comment: 8 pages, 6 figure

    Structure and screening in molecular and metallic hydrogen at high pressure

    Get PDF
    A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure

    Thermal diffuse X-ray scattering in simple metals

    Get PDF
    Calculations are reported for the ionic structure factor and X-ray scattering cross section of sodium (at T=0 K and 90 K) and lithium (both isotopes at T=0 K) within the harmonic approximation. An evaluation of the appropriate displacement- displacement correlation function by the special point method circumvents the need for a multiphonon expansion. In the case of sodium, the structure in the one-phonon scattering was straightforwardly accounted for, and an approximate expansion was obtained for all multiphonon scattering. By treating core and conduction electrons on an equal footing, it is shown that information on the conduction electron system is present in the forward scattering component. In lithium the one-phonon cross section at small angles aids in the determination of the effective electron-ion interaction

    Mapping the Berry Curvature from Semiclassical Dynamics in Optical Lattices

    Full text link
    We propose a general method by which experiments on ultracold gases can be used to determine the topological properties of the energy bands of optical lattices, as represented by the map of the Berry curvature across the Brillouin zone. The Berry curvature modifies the semiclassical dynamics and hence the trajectory of a wave packet undergoing Bloch oscillations. However, in two dimensions these trajectories may be complicated Lissajous-like figures, making it difficult to extract the effects of Berry curvature in general. We propose how this can be done using a "time-reversal" protocol. This compares the velocity of a wave packet under positive and negative external force, and allows a clean measurement of the Berry curvature over the Brillouin zone. We discuss how this protocol may be implemented and explore the semiclassical dynamics for three specific systems: the asymmetric hexagonal lattice, and two "optical flux" lattices in which the Chern number is nonzero. Finally, we discuss general experimental considerations for observing Berry curvature effects in ultracold gases.Comment: 12 page

    Lattice two-body problem with arbitrary finite range interactions

    Full text link
    We study the exact solution of the two-body problem on a tight-binding one-dimensional lattice, with pairwise interaction potentials which have an arbitrary but finite range. We show how to obtain the full spectrum, the bound and scattering states and the "low-energy" solutions by very efficient and easy-to-implement numerical means. All bound states are proven to be characterized by roots of a polynomial whose degree depends linearly on the range of the potential, and we discuss the connections between the number of bound states and the scattering lengths. "Low-energy" resonances can be located with great precission with the methods we introduce. Further generalizations to include more exotic interactions are also discussed.Comment: 6 pages, 3 figure

    Electronic Properties of Strained Si/Ge Core-Shell Nanowires

    Full text link
    We investigated the electronic properties of strained Si/Ge core-shell nanowires along the [110] direction using first principles calculations based on density-functional theory. The diameter of the studied core-shell wire is up to 5 nm. We found the band gap of the core-shell wire is smaller than that of both pure Si and Ge wires with the same diameter. This reduced band gap is ascribed to the intrinsic strain between Ge and Si layers, which partially counters the quantum confinement effect. The external strain is further applied to the nanowires for tuning the band structure and band gap. By applying sufficient tensile strain, we found the band gap of Si-core/Ge-shell nanowire with diameter larger than ~3 nm experiences a transition from direct to indirect gap.Comment: 4 figure

    Quantum-Well Wavefunction Localization and the Electron-Phonon Interaction in Thin Ag Nanofilms

    Full text link
    The electron-phonon interaction in thin Ag-nanofilms epitaxially grown on Cu(111) is investigated by temperature-dependent and angle-resolved photoemission from silver quantum-well states. Clear oscillations in the electron-phonon coupling parameter as a function of the silver film thickness are observed. Different from other thin film systems where quantum oscillations are related to the Fermi-level crossing of quantum-well states, we can identify a new mechanism behind these oscillations, based on the wavefunction localization of the quantum-well states in the film

    Steering Magnetic Skyrmions with Nonequilibrium Green's Functions

    Full text link
    Magnetic skyrmions, topologically protected vortex-like configurations in spin textures, are of wide conceptual and practical appeal for quantum information technologies, notably in relation to the making of so-called race-track memory devices. Skyrmions can be created, steered and destroyed with magnetic fields and/or (spin) currents. Here we focus on the latter mechanism, analyzed via a microscopic treatment of the skyrmion-current interaction. The system we consider is an isolated skyrmion in a square-lattice cluster, interacting with electrons spins in a current-carrying quantum wire. For the theoretical description, we employ a quantum formulation of spin-dependent currents via nonequilibrium Green's functions (NEGF) within the generalized Kadanoff-Baym ansatz (GKBA). This is combined with a treatment of skyrmions based on classical localized spins, with the skyrmion motion described via Ehrenfest dynamics. With our mixed quantum-classical scheme, we assess how time-dependent currents can affect the skyrmion dynamics, and how this in turn depends on electron-electron and spin-orbit interactions in the wire. Our study shows the usefulness of a quantum-classical treatment of skyrmion steering via currents, as a way for example to validate/extract an effective, classical-only, description of skyrmion dynamics from a microscopic quantum modeling of the skyrmion-current interaction.Comment: 10 pages, 8 figures, contribution to the proceedings of "Progress in Nonequilibrium Green's Functions VII

    Disorder induced transition into a one-dimensional Wigner glass

    Full text link
    The destruction of quasi-long range crystalline order as a consequence of strong disorder effects is shown to accompany the strict localization of all classical plasma modes of one-dimensional Wigner crystals at T=0. We construct a phase diagram that relates the structural phase properties of Wigner crystals to a plasmon delocalization transition recently reported. Deep inside the strictly localized phase of the strong disorder regime, we observe ``glass-like'' behavior. However, well into the critical phase with a plasmon mobility edge, the system retains its crystalline composition. We predict that a transition between the two phases occurs at a critical value of the relative disorder strength. This transition has an experimental signature in the AC conductivity as a local maximum of the largest spectral amplitude as a function of the relative disorder strength.Comment: 5 pages, revtex. Typo regarding localization length exponent corrected. Should read 1 / \delt

    Interference between a large number of independent Bose-Einstein condensates

    Full text link
    We study theoretically the interference patterns produced by the overlap of an array of Bose-Einstein condensates that have no phase coherence among them. We show that density-density correlations at different quasimomenta, which play an important role in two-condensate interference, become negligible for large NN, where NN is the number of overlapping condensates. In order to understand the physics of this phenomenon, it is sufficient to consider the periodicity of the lattice and the statistical probability distribution of a random-walk problem. The average visibility of such interference patterns decreases as N−1/2N^{-1/2} for large NN.Comment: 9 pages, 2 figure
    • …
    corecore